Conference workshops

Core Workshop

Dimitrios Vlachos1

1University of Peloponnese, Department of Informatics and Telecommunications, Greece

Description

This Workshop contains all the submissions that have not been assigned in other specific Workshops. Upon the finalization of the Technical Program, submissions in the Core Workshop will be assigned to Presentation Slots according to their subject.


Complex systems and Complex Networks

Dimitrios Vlachos1

1University of Peloponnese, Department of Informatics and Telecommunications, Greece

Description

This workshop will focus on topics of complexity with special emphasis on complex networks and multiplex networks. Complex networks are studied in many diverse fields, such as mathematics, physics, biology, sociology, economics, and computer science. In recent years, the field has seen a tremendous growth. The session will focus on recent advances in the field and will include both theoretical and applied research in complex systems. Particular emphasis will be given to the interdisciplinary nature of complex networks. A wide range of topics will be covered, such as network structure and dynamics on networks, coupled networks, spreading, synchronization, visualization, algorithms, large-scale data analysis, as well as networks of interest to biology, sociology, computer science, economics, medicine, linguistics, etc.


Geometric integration in physical sciences and engineering

Dimitrios Vlachos1

1University of Peloponnese, Department of Informatics and Telecommunications, Greece

Description

Many differential equations, which are of interest in the physical sciences and engineering, exhibit geometric properties that are preserved by the dynamics. Discrete Lagrangian integrators, as a special type of geometric integration, has been recent interest in developing numerical schemes that preserve as many of these geometric invariants as possible. Such methods are of particular interest for problems that can be described by geometric mechanics, wherein the preservation of physical invariants such as the energy, momentum, and symplectic form can be important when simulating long-time dynamics of such systems. The aim of the session is to bring together researchers in mathematics, computer science, physical sciences, and engineering, who are interested in the broad area of numerical methods (for ordinary differential equations to partial differential equations) that preserve the underlying structure of the governing differential equations.


Computational Nanoscience and Material Science

Dimitrios Vlachos1

1University of Peloponnese, Department of Informatics and Telecommunications, Greece

Description

Computational nanoscience in particular and Computational Material Science in general, are rapidly developing fields providing computer simulational and theoretical background for understanding of nanoscale phenomena and nanotechnology research. Computational nanoscience overarches the whole spectrum of science including biology, physics, engineering, material science and chemistry, describing the behaviour of matter at the scale of individual atoms and molecules. This session will concentrate on novel computational approaches used in nanoscale research, including: Quantum Monte Carlo, Molecular Dynamics, Density Functional Theory, Time-Dependent Quantum Dynamics Simulations, Interaction of Nanoscale Materials and Laser Fields, Quantum Transport in Nanoscale Materials, Multiscale Modeling of Nanoscale Materials, Novel Computational Approaches, Electronic Structure Calculations and Attoscale Dynamics.